some additional code to facilitate the analysis presented in Dormann & Kaschner (2011)

```r
require(gbm)
require(verification)
require(randomForest)
require(Hmisc)
require(MASS)
require(maptools)
require(spdep)

formula.maker <- function(dataframe, y.col=1, quadratic=TRUE, interactions=TRUE) {
  # makes a formula for GLM from dataframe column names,
  # including quadratic effects and first-order interactions
  # by default, first column is taken to be the response (y); else, an integer giving the column with
  # the response in "dataframe"
  # by Carsten F. Dormann
  if (quadratic && interactions) {
    f <- as.formula(paste(colnames(dataframe)[y.col], " ~ (", paste(colnames(dataframe[, -y.col]), collapse=" + ", sep=""), ",")^2 + ", paste("I(", colnames(dataframe[, -y.col]), ",^2)", collapse="+", sep=""))
  }
  if (quadratic & !interactions) {
    f <- as.formula(paste(colnames(dataframe)[y.col], " ~ (", paste(colnames(dataframe[, -y.col]), collapse=" + ", sep=""), ",") + ", paste("I(" colnames(dataframe[, -y.col]), ",^2)", collapse="+", sep=""))
  }
  if (!quadratic & !interactions) {
    f <- as.formula(paste(colnames(dataframe)[y.col], " ~ (", paste(colnames(dataframe[, -y.col]), collapse=" + ", sep=""), ",")^2)
  } # + ", paste("I(" colnames(dataframe[, -1]), ",^2)", collapse="+", sep=""))
  }
  f
}
```

here the original file starts

```r
`gbm.step` <- function(data, 
  gbm.x, 
  gbm.y, 
  tree.complexity = 1, 
  learning.rate = 0.001, 
  bag.fraction = 0.5, 
  var.monotone = rep(0, length(gbm.x)), 
  n.folds = 10, 
  prev.stratify = TRUE, 
  family = "bernoulli", 
  gaussian 
  n.trees = 50, 
  step.size = n.trees, 
  max.trees = 5000, 
  tolerance.method = "fixed", 
  tolerance = 0.0, 
  keep.data = FALSE, 
  plot.main = TRUE, 
  plot.folds = FALSE, 
  
  # the input dataframe
  # the predictors
  # and response
  # sets the complexity of individual trees
  # sets the weight applied to individual trees
  # sets the proportion of observations used in selecting
  # allows varying weighting for sites
  # restricts responses to individual predictors to monotone
  # number of folds
  # prevalence stratify the folds - only for p/a data
  # family - bernoulli (=binomial), poisson, laplace or
  # number of initial trees to fit
  # numbers of trees to add at each cycle
  # max number of trees to fit before stopping
  # method to use in deciding to stop - "fixed" or "auto"
  # tolerance value to use if method == fixed
  # keep raw data in final model
  # plot hold-out deviance curve
  # plot the individual folds as well
```
verbose = TRUE, # control amount of screen reporting
silent = FALSE, # to allow running with no output for simplifying model
...)

#
j. leathwick/j. elith - 30th March 2007
#
version 2.8
function to assess optimal no of boosting trees using k-fold cross validation
implements the cross-validation procedure described on page 215 of
Data Mining, Inference, and Prediction Springer-Verlag, New York.
divides the data into 10 subsets, with stratification by prevalence if required for pa data
then fits a gbm model of increasing complexity along the sequence from n.trees to n.trees + (n.steps * step.size)
calculating the residual deviance at each step along the way
after each fold processed, calculates the average holdout residual deviance and its standard error
then identifies the optimal number of trees as that at which the holdout deviance is minimised
and fits a model with this number of trees, returning it as a gbm model along with additional information
from the cv selection process
updated 13/6/05 to accommodate weighting of sites
updated 19/8/05 to increment all folds simultaneously, allowing the stopping rule
for the maximum number of trees to be fitted to be imposed by the data,
rather than being fixed in advance
updated 29/8/05 to return cv test statistics, and deviance as mean
time for analysis also returned via unclass(Sys.time())
updated 5/9/05 to use external function calc.deviance
and to return cv test stats via predictions formed from fold models
with n.trees = target.trees
updated 15/5/06 to calculate variance of fitted and predicted values across folds
these can be expected to approximate the variance of fitted values
as would be estimated for example by bootstrapping
as these will underestimate the true variance
they are corrected by multiplying by (n-1)^2/n
where n is the number of folds
updated 25/3/07 to allow varying of bag fraction
#
requires gbm library from Cran
requires roc and calibration scripts of J Elith
requires calc.deviance script of J Elith/J Leathwick
#

require(gbm)

if (silent) verbose <- FALSE

initiate timing call
z1 <- unclass(Sys.time())

setup input data and assign to position one
dataframe.name <- deparse(substitute(data)) # get the dataframe name
data <- eval(data)
x.data <- eval(data[, gbm.x]) # form the temporary datasets
names(x.data) <- names(data)[gbm.x]
y.data <- eval(data[, gbm.y])
sp.name <- names(data)[gbm.y]

assign("x.data", x.data, env = globalenv()) # and assign them for later use
assign("y.data", y.data, env = globalenv())

n.cases <- nrow(data)

if (!silent) {
 cat("n","\n","GBM STEP - version 2.5","\n","n")
 cat("Performing cross-validation selection of a boosted regression tree model for",sp.name,"\n")
 cat(" with dataframe",dataframe.name,"containing",n.cases,"rows of data","\n","n")
}

set up the selector variable either with or without prevalence stratification
if (prev.stratify & family == "bernoulli") {
 presence.mask <- data[,gbm.y] == 1
 absence.mask <- data[,gbm.y] == 0
 n.pres <- sum(presence.mask)
 n.abs <- sum(absence.mask)

 # create a vector of randomised numbers and feed into presences
 selector <- rep(0,n.cases)
 temp <- rep(seq(1, n.folds, by = 1), length = n.pres)
 temp <- temp[order(runif(n.pres, 1, 100))]
 selector[presence.mask] <- temp

 # and then do the same for absences
 temp <- rep(seq(1, n.folds, by = 1), length = n.abs)
 temp <- temp[order(runif(n.abs, 1, 100))]
 selector[absence.mask] <- temp
} else {
 # otherwise make them random with respect to presence/absence
 selector <- rep(seq(1, n.folds, by = 1), length = n.cases)
 selector <- selector[order(runif(n.cases, 1, 100))]
}

set up the storage space for results
pred.values <- rep(0, n.cases)

cv.loss.matrix <- matrix(0, nrow = n.folds, ncol = 1)
training.loss.matrix <- matrix(0, nrow = n.folds, ncol = 1)
trees.fitted <- n.trees

model.list <- list(paste("model",c(1:n.folds),sep=""))

set up the initial call to gbm

gbm.call <- paste("gbm(y.subset ~ .,data=x.subset, n.trees = n.trees,
 interaction.depth = tree.complexity, shrinkage = learning.rate,
 bag.fraction = bag.fraction, weights = weight.subset,
 distribution = as.character(family), var.monotone = var.monotone,
 verbose = FALSE)", sep="")

n.fitted <- n.trees

calculate the total deviance

y_i <- y.data
u_i <- sum(y.data * site.weights) / sum(site.weights)

u_i <- rep(u_i,length(y_i))
total.deviance <- calc.deviance(y_i, u_i, weights = site.weights, family = family, calc.mean = FALSE)

mean.total.deviance <- total.deviance/n.cases

now step through the folds setting up the initial call

if (!silent){
 cat("creating",n.folds,"initial models of",n.trees,"trees","\n")
if (prev.stratify & family == "bernoulli") cat("\n", "folds are stratified by prevalence", "\n", "\n")
else cat("\n", "folds are unstratified", "\n", "\n")

if (tolerance.method == "fixed") {
 cat("tolerance is fixed at ", tolerance, "\n", "\n")
if (tolerance.method == "auto") {
 cat("tolerance will be fixed at 1% of the first change in deviance", "\n", "\n")
if (tolerance.method != "fixed" & tolerance.method != "auto"){
 cat("invalid argument for tolerance method - should be auto or fixed", "\n")
 return()
}

cat("total mean deviance = ", round(mean.total.deviance, 4), "\n", "\n")
}

if (verbose) cat("ntrees resid. dev.", "\n")
for (i in 1:n.folds) {
 model.mask <- selector != i #used to fit model on majority of data
 pred.mask <- selector == i #used to identify the with-held subset
 y.subset <- y.data[model.mask]
 x.subset <- x.data[model.mask,]
 weight.subset <- site.weights[model.mask]
 model.list[[i]] <- eval(parse(text = gbm.call))
 fitted.values <- predict.gbm(model.list[[i]], x.subset, type = "response", n.trees = n.trees)
 pred.values[pred.mask] <- predict.gbm(model.list[[i]], x.data[pred.mask,], type = "response", n.trees = n.trees)
 # calc training deviance
 y_i <- y.subset
 u_i <- fitted.values
 weight.fitted <- site.weights[model.mask]
 training.loss.matrix[i,1] <- calc.deviance(y_i, u_i, weight.fitted, family = family)
 # calc holdout deviance
 y_i <- y.data[pred.mask]
 u_i <- pred.values[pred.mask]
 weight.preds <- site.weights[pred.mask]
 cv.loss.matrix[i,1] <- calc.deviance(y_i, u_i, weight.preds, family = family)
} # end of first loop
now process until the change in mean deviance is <= tolerance or max.trees is exceeded
delta.deviance <- 1

cv.loss.values <- apply(cv.loss.matrix, 2, mean)
if (verbose) cat(n.fitted, "\n", round(cv.loss.values, 4), "\n", "\n")
if (!silent) cat(""
if (!silent) cat("now adding trees...", "\n")
j <- 1
while (delta.deviance > tolerance & n.fitted < max.trees) { # beginning of inner loop
 # add a new column to the results matrix..
 training.loss.matrix <- cbind(training.loss.matrix, rep(0, n.folds))
 cv.loss.matrix <- cbind(cv.loss.matrix, rep(0, n.folds))
 n.fitted <- n.fitted + step.size
 trees.fitted <- c(trees.fitted, n.fitted)
 j <- j + 1
}
for (i in 1:n.folds) {
 model.mask <- selector != i # used to fit model on majority of data
 pred.mask <- selector == i # used to identify the with-held subset
 y.subset <- y.data[model.mask]
 x.subset <- x.data[model.mask]
 weight.subset <- site.weights[model.mask]
 model.list[[i]] <- gbm.more(model.list[[i]], step.size)
 fitted.values <- predict.gbm(model.list[[i]], x.subset, type = "response", n.trees = n.fitted)
 pred.values[pred.mask] <- predict.gbm(model.list[[i]], x.data[pred.mask,], type = "response", n.trees = n.fitted)
 # calculate training deviance
 y_i <- y.subset
 u_i <- fitted.values
 weight.fitted <- site.weights[model.mask]
 training.loss.matrix[i,j] <- calc.deviance(y_i, u_i, weight.fitted, family = family)
 # calc holdout deviance
 u_i <- pred.values[pred.mask]
 y_i <- y.data[pred.mask]
 weight.preds <- site.weights[pred.mask]
 cv.loss.matrix[i,j] <- calc.deviance(y_i, u_i, weight.preds, family = family)
} # end of inner loop

cv.loss.values <- apply(cv.loss.matrix,2,mean)
if (j == 2) {
 if (tolerance.method == "auto") {
 tolerance <- (cv.loss.values[1] - cv.loss.values[2]) / 1000
 if (!silent) cat("tolerance set to ",round(tolerance,5),"\n")
 }
 if (j < 5) {
 if (cv.loss.values[j] > cv.loss.values[j-1]) {
 if (!silent) cat("restart model with a smaller learning rate or smaller step size...")
 return()
 }
 }
 if (j >= 20) { #calculate stopping rule value
 test1 <- mean(cv.loss.values[(j-9):j])
 test2 <- mean(cv.loss.values[(j-19):(j-9)])
 delta.deviance <- test2 - test1
 }
 if (verbose) cat(n.fitted," ",round(cv.loss.values[j],4),"\n")
} # end of while loop

now begin process of calculating optimal number of trees
training.loss.values <- apply(training.loss.matrix,2,mean)

find the target holdout deviance
y.bar <- min(cv.loss.values)

plot out the resulting curve of holdout deviance
if (plot.main) {
 y.min <- min(cv.loss.values - cv.loss.ses) #je added multiplier 10/8/05
 y.max <- max(cv.loss.values + cv.loss.ses) #je added multiplier 10/8/05
}
if (plot.folds) {
 y.min <- min(cv.loss.matrix)
 y.max <- max(cv.loss.matrix)
}

plot(trees.fitted, cv.loss.values, type = 'l', ylab = "holdout deviance",
 xlab = "no. of trees", ylim = c(y.min,y.max), ...)
abline(h = y.bar, col = 2)

lines(trees.fitted, cv.loss.values + cv.loss.ses, lty=2)
lines(trees.fitted, cv.loss.values - cv.loss.ses, lty=2)

if (plot.folds) {
 for (i in 1:n.folds) {
 lines(trees.fitted, cv.loss.matrix[i,],lty = 3)
 }
}

identify the optimal number of trees

estimate the cv deviance and test statistics
includes estimates of the standard error of the fitted values added 2nd may 2005

target.trees <- trees.fitted[match(TRUE,cv.loss.values == y.bar)]

if(plot.main) {
 abline(v = target.trees, col=3)
 title(paste(sp.name,"d - ",tree.complexity,"",lr - ",learning.rate, sep=""))
}

fitted.vars <- apply(fitted.matrix,1, var, na.rm = TRUE)
now calculate the mean and se's for the folds

cv.dev <- mean(cv.deviance.stats, na.rm = TRUE)
cv.dev.se <- sqrt(var(cv.deviance.stats)) / sqrt(n.folds)
cv.cor <- mean(cv.cor.stats, na.rm = TRUE)
cv.cor.se <- sqrt(var(cv.cor.stats, use = "complete.obs")) / sqrt(n.folds)

cv.roc <- 0.0
cv.roc.se <- 0.0

if (family == "bernoulli") {
 cv.roc <- mean(cv.roc.stats, na.rm = TRUE)
cv.roc.se <- sqrt(var(cv.roc.stats, use = "complete.obs")) / sqrt(n.folds)
}

cv.calibration <- 0.0
cv.calibration.se <- 0.0

if (family == "poisson" | family == "bernoulli") {
 cv.calibration <- apply(cv.calibration.stats, 2, mean)
cv.calibration.se <- sqrt(var(cv.calibration.stats, use = "complete.obs")) / sqrt(n.folds)
}

fit the final model

gbm.call <- paste("gbm(y.data ~ ., n.trees = target.trees,
data = x.data, verbose = F, interaction.depth = tree.complexity,
 bag.fraction = bag.fraction, weights = site.weights,
 shrinkage = learning.rate, distribution = as.character(family),
 var.monotone = var.monotone, keep.data = keep.data)", sep="")

if (!silent) cat("fitting final gbm model with a fixed number of ", target.trees, " trees for ", sp.name, "\n")

gbm.object <- eval(parse(text = gbm.call))

best.trees <- target.trees

extract fitted values and summary table

gbm.summary <- summary(gbm.object, n.trees = target.trees, plotit = FALSE)
fitted.values <- predict.gbm(gbm.object, x.data, n.trees = target.trees, type = "response")

y.i <- y.data
u.i <- fitted.values

resid.deviance <- calc.deviance(y.i, u.i, weights = site.weights, family = family, calc.mean = FALSE)

self.cor <- cor(y.i, u.i)

self.calibration <- 0.0

self.roc <- 0.0

if (family == "bernoulli") {
 # do this manually as we need the residuals
 resid.contribs <- (y.i * log(u.i)) + ((1-y.i) * log(1 - u.i))
 residuals <- sqrt(abs(resid.contribs * 2))
 residuals <- ifelse(resid-contribs < 0, 0 - residuals, residuals)
 self.roc <- roc(y.i, u.i)

 self.calibration <- calibration(y.i, u.i, "binomial")
}

if (family == "poisson") {
 # do this manually as we need the residuals
 resid.contribs <- ifelse(y.i == 0, 0, (y.i * log(y.i/u.i))) - (y.i - u.i)
 residuals <- sqrt(abs(resid.contribs * 2))
 residuals <- ifelse(y.i - u.i < 0, 0 - residuals, residuals)

 self.calibration <- calibration(y.i, u.i, "poisson")
}

if (family == "gaussian" | family == "laplace") {
 residuals <- y.i - u.i
}

mean.resid.deviance <- resid.deviance/n.cases

z2 <- unclass(Sys.time())
elapsed.time.minutes <- round((z2 - z1)/ 60,2) #calculate the total elapsed time
```r
if (verbose) {
  cat("\n")
  cat("mean total deviance =", round(mean.total.deviance,3),"\n")
  cat("mean residual deviance =", round(mean.resid.deviance,3),"\n","\n")
  cat("estimated cv deviance =", round(cv.dev,3),"; se =", round(cv.dev.se,3),"\n")
  cat("training data correlation =",round(self.cor,3),"\n")
  cat("cv correlation = ",round(cv.cor,3),"; se =",round(cv.cor.se,3),"\n")
  cat("elapsed time - ",round(elapsed.time.minutes,2),"minutes","\n")
}
if (n.fitted == max.trees & !silent) {
  cat("\n","########### warning ##########","\n")
  cat("maximum tree limit reached - results may not be optimal","\n")
  cat(" - refit with faster learning rate or increase maximum number of trees","\n")
}

# now assemble data to be returned

gbm.detail <- list(dataframe = dataframe.name, gbm.x = gbm.x, predictor.names = names(x.data),
  gbm.y = gbm.y, response.name = sp.name, family = family, tree.complexity = tree.complexity,
  learning.rate = learning.rate, bag.fraction = bag.fraction, cv.folds = n.folds,
  prev.stratification = prev.stratify, max.fitted = n.fitted, n.trees = target.trees,
  best.trees = target.trees, train.fraction = 1.0, tolerance.method = tolerance.method,
  tolerance = tolerance, var.monotone = var.monotone, date = date(), ### random.seed = seed,
  elapsed.time.minutes = elapsed.time.minutes)

training.stats <- list(null = total.deviance, mean.null = mean.total.deviance,
  resid = resid.deviance, mean.resid = mean.resid.deviance, correlation = self.cor,
  discrimination = self.roc, calibration = self.calibration)

cv.stats <- list(deviance.mean = cv.dev, deviance.se = cv.dev.se,
  correlation.mean = cv.cor, correlation.se = cv.cor.se,
  discrimination.mean = cv.roc, discrimination.se = cv.roc.se,
  calibration.mean = cv.calibration, calibration.se = cv.calibration.se)

rm(x.data,y.data, envir = globalenv()) #finally, clean up the temporary dataframes

for (i in 1:n.folds) model.list[[i]] <- NULL
x.data <- NULL
y.data <- NULL
pred.values <- NULL

# and assemble results for return

gbm.object$gbm.call <- gbm.detail
gbm.object$fitted <- fitted.values
gbm.object$fitted.vars <- fitted.vars
gbm.object$residuals <- residuals
gbm.object$contributions <- gbm.summary
gbm.object$self.statistics <- training.stats
gbm.object$cv.statistics <- cv.stats
gbm.object$weights <- site.weights
gbm.object$trees.fitted <- trees.fitted
gbm.object$training.loss.values <- training.loss.values
gbm.object$cv.values <- cv.loss.values
gbm.object$cv.loss.ses <- cv.loss.ses
gbm.object$cv.loss.matrix <- cv.loss.matrix
gbm.object$cv.roc.matrix <- cv.roc.stats
gbm.object$cv.roc.matrix <- cv.roc.stats

return(gbm.object)
}

'gbm.fixed' <-
function (data,
  gbm.x,
  gbm.y,
  tree.complexity = 1,
```
site.weights = rep(1, nrow(data)),
verbose = TRUE,
learning.rate = 0.001,
n.trees = 2000,
train.fraction = 1,
family = "bernoulli",
keep.data = FALSE,
var.monotone = rep(0, length(gbm.x))
}

j leathwick, j elith - 6th May 2006
#
version 2.5 - developed in R 2.0
#
calculates a gradient boosting (gbm)object with a fixed number of trees
with the number of trees identified using gbm.step or some other procedure
#
takes as input a dataset and args selecting x and y variables, and degree of interaction depth
#
updated 13/6/05 to accommodate weighting of sites when calculating total and residual deviance
#
updated 10/8/05 to correct how site.weights are returned
#
requires gbm
#
require(gbm)

setup input data and assign to position one

dataframe.name <- deparse(substitute(data)) # get the dataframe name

data <- eval(data[, gbm.x]) # form the temporary datasets
names(x.data) <- names(data)[gbm.x]
y.data <- eval(data[, gbm.y])
sp.name <- names(data)[gbm.y]

assign("x.data", x.data, pos = 1) # and assign them for later use
assign("y.data", y.data, pos = 1)

fit the gbm model

gbm.call <- paste("gbm(y.data ~ ., n.trees = n.trees, data=x.data, verbose = F, interaction.depth =
tree.complexity,
weights = site.weights, shrinkage = learning.rate, distribution = as.character(family),
var.monotone = var.monotone, keep.data = keep.data"", sep="")

if (verbose) {
 print(parse(text = gbm.call))
}

gbm.object <- eval(parse(text = gbm.call))

best.trees <- n.trees

extract fitted values and summary table

fitted.values <- predict.gbm(gbm.object, x.data, n.trees = n.trees, type="response")
gbm.summary <- summary(gbm.object, n.trees = n.trees, plotit = FALSE)

y.i <- y.data
u.i <- fitted.values

if (family == "poisson") {
 deviance.contrbs <- ifelse(y.i == 0, 0, (y.i * log(y.i/u.i))) - (y.i - u.i)
 resid.deviance <- 2 * sum(deviance.contrbs * site.weights)
 residuals <- sqrt(abs(deviance.contrbs * 2))
 residuals <- ifelse((y.i - u.i) < 0, 0 - residuals, residuals)
 u.i <- sum(y.data * site.weights) / sum(site.weights)
deviance.contribs <- ifelse(y_i == 0, 0, (y_i * log(y_i/u_i))) - (y_i - u_i)

total.deviance <- 2 * sum(deviance.contribs * site.weights)

if (family == "bernoulli") {
 deviance.contribs <- (y_i * log(u_i)) + ((1-y_i) * log(1 - u_i))
 resid.deviance <- -2 * sum(deviance.contribs * site.weights)
 residuals <- sqrt(abs(deviance.contribs * 2))
 residuals <- ifelse((y_i - u_i) < 0, 0 - residuals, residuals)
 u_i <- sum(y.data * site.weights) / sum(site.weights)
 deviance.contribs <- (y_i * log(u_i)) + ((1-y_i) * log(1 - u_i))
 total.deviance <- -2 * sum(deviance.contribs * site.weights)
}

if (family == "laplace") {
 resid.deviance <- sum(abs(y_i - u_i))
 residuals <- y_i - u_i
 u_i <- mean(y.data)
 total.deviance <- sum(abs(y_i - u_i))
}

if (family == "gaussian") {
 resid.deviance <- sum((y_i - u_i) * (y_i - u_i))
 residuals <- y_i - u_i
 u_i <- mean(y.data)
 total.deviance <- sum((y_i - u_i) * (y_i - u_i))
}

if (verbose) {
 print(paste("total deviance = ",round(total.deviance,2),sep=""),quote=F)
 print(paste("residual deviance = ",round(resid.deviance,2),sep=""),quote=F))

now assemble data to be returned

gbm.detail <- list(dataframe = dataframe.name, gbm.x = gbm.x, predictor.names = names(x.data),
 gbm.y = gbm.y, reponse.name = names(y.data), tree.complexity = tree.complexity, n.trees = n.trees,
 learning.rate = learning.rate, best.trees = best.trees, cv.folds = 0,
 family = family, train.fraction = train.fraction, var.monotone = var.monotone)

rm(x.data,y.data, pos=1) #finally, clean up the temporary dataframes

return(gbm.object)

`gbm.holdout` <-
function (data, gbm.x, gbm.y, learning.rate = 0.001, tree.complexity = 1,
 family = "bernoulli", n.trees = 200,
 add.trees = n.trees, max.trees = 20000,
 verbose = TRUE, train.fraction = 0.8,
 permute = TRUE, prev.stratify = TRUE,
 var.monotone = rep(0, length(gbm.x)),
 site.weights = rep(1, nrow(data)),
 refit = TRUE,
 keep.data = TRUE) {
 # the input data frame
 # indices of predictor variables
 # index of response variable
 # typically varied between 0.1 and 0.001
 # sometimes called interaction depth
 # "bernoulli","poisson", etc. as for gbm
 # initial number of trees
 # number of trees to add at each increment
 # maximum number of trees to fit
 # controls degree of screen reporting
 # proportion of data to use for training
 # reorder data to start with
 # stratify selection for p/a data
 # allows constraining of response to monotone
 # set equal to 1 by default
 # refit the model with the full data but id'd no of trees
 # keep copy of the data
j leathwick, j elith - October 2006
version 2.7 - developed in R 2.3.1
calculates a gradient boosting (gbm) object in which model complexity is
determined using a training set with predictions made to a withheld set
an initial set of trees is fitted, and then trees are progressively added
testing performance # along the way, using gbm.perf until the optimal
number of trees is identified
as any structured ordering of the data should be avoided, a copy of the data set
BY DEFAULT is randomly reordered each time the function is run
takes as input a dataset and args selecting x and y variables, and degree of interaction depth
requires gbm
#
require(gbm)
#
setup input data and assign to position one
dataframe.name <- deparse(substitute(data)) # get the dataframe name
cv.folds <- 0

if (permute) {
 print("", quote=FALSE)
 print("WARNING - data is being randomly reordered to avoid confounding effects", quote=FALSE)
 print("of inherent structure as submitted - use permute = FALSE to turn off this option", quote=FALSE)
 n.rows <- nrow(data)
 if (prev.stratify == TRUE & family == "bernoulli") {
 presence.mask <- data[, gbm.y] == 1
 absence.mask <- data[, gbm.y] == 0
 n.pres <- sum(presence.mask)
 n.abs <- sum(absence.mask)
 selector <- seq(1, n.rows)
temp <- sample(selector[presence.mask], size = n.pres * train.fraction)
 selector[temp] <- 0
 temp <- sample(selector[absence.mask], size = n.abs * train.fraction)
 selector[temp] <- 0
 sort.vector <- sort(selector, index.return = TRUE)[[2]]
 }
 else {
 sort.vector <- sample(seq(1, n.rows), n.rows, replace=FALSE)
 }
 sort.data <- data[sort.vector,]

 x.data <- eval(sort.data[, gbm.x]) # form the temporary datasets
 y.data <- eval(sort.data[, gbm.y])
}
else {
 x.data <- eval(data[, gbm.x]) # form the temporary datasets
 y.data <- eval(data[, gbm.y])
}

names(x.data) <- names(data)[gbm.x]
names(y.data) <- names(data)[gbm.y]

assign("x.data", x.data, pos = 1) # and assign them for later use
assign("y.data", y.data, pos = 1)

fit the gbm model
print(paste("fitting initial gbm model of ", n.trees, " trees for ", sp.name, sep=""), quote=FALSE)
print(" and expanding using withheld data for evaluation", quote=FALSE)

gbm.call <- paste("gbm(y.data ~ ., n.trees = n.trees, data=x.data, verbose = F, interaction.depth =
tree.complexity,
 weights = site.weights, shrinkage = learning.rate, cv.folds = 0, distribution = as.character
(family),
 train.fraction = train.fraction, var.monotone = var.monotone, keep.data = keep.data)", sep="")
gbm.object <- eval(parse(text = gbm.call))

identify the best number of trees using method appropriate to model
best.trees <- gbm.perf(gbm.object, method = 'test', plot.it = FALSE)
n.fitted <- n.trees

if (verbose)
 print("expanding model to find optimal no of trees...", quote=FALSE)
while(gbm.object$n.trees - best.trees < n.trees & n.fitted < max.trees){
 gbm.object <- gbm.more(gbm.object, add.trees)
 best.trees <- gbm.perf(gbm.object, method = 'test', plot.it = FALSE)
 n.fitted <- n.fitted + add.trees
 if (n.fitted % 100 == 0){ #report times along the way
 if (verbose)
 print(paste("fitted trees = ", n.fitted, sep = ""), quote = FALSE)
 }
}
if (verbose)
 print(paste("fitting stopped at ", best.trees, " trees", sep=""), quote=FALSE)
if (refit) { # we are refitting the model with fixed tree size
 print(paste("refitting the model to the full dataset using ", best.trees,
 "trees", sep=""), quote=FALSE)
 x.data <- eval(data[, gbm.x])
 y.data <- eval(data[, gbm.y])

gbm.call <- eval(paste("gbm(y.data ~ ., n.trees = best.trees, data=x.data, verbose = F,
interaction.depth = tree.complexity,
 weights = site.weights, shrinkage = learning.rate, cv.folds = 0, distribution = as.character
(family),
 var.monotone = var.monotone, keep.data = keep.data)", sep="")
gbm.object <- eval(parse(text = gbm.call))
}

#extract fitted values and summary table
fitted.values <- predict.gbm(gbm.object,x.data,n.trees = best.trees,type="response")
gbm.summary <- summary(gbm.object,n.trees = best.trees, plotit = FALSE)

y_i <- y.data
u_i <- fitted.values

if (family == "poisson") {
 deviance.contribs <- ifelse(y_i == 0, 0, (y_i * log(y_i/u_i))) - (y_i - u_i)
 resid.deviance <- 2 * sum(deviance.contribs)
 residuals <- sqrt(abs(deviance.contribs * 2))
 residuals <- ifelse((y_i - u_i) < 0, 0 - residuals, residuals)
 u_i <- mean(y.data)
 total.deviance <- 2 * sum(ifelse(y_i == 0, 0, (y_i * log(y_i/u_i))) - (y_i - u_i))
}
if (family == "bernoulli") {
 deviance.contribs <- (y_i * log(u_i)) + ((1-y_i) * log(1 - u_i))
 resid.deviance <- -2 * sum(deviance.contribs)
 residuals <- sqrt(abs(deviance.contribs * 2))
 residuals <- ifelse((y_i - u_i) < 0, 0 - residuals, residuals)
u_i <- mean(y.data)

total.deviance <- -.2 * sum((y_i * log(u_i)) + ((1-y_i) * log(1 - u_i)))

if (verbose) {
 print(paste("total deviance = ",round(total.deviance,2),sep=""),quote=F)
 print(paste("residual deviance = ",round(resid.deviance,2),sep=""),quote=F)
}

now assemble data to be returned

gbm.detail <- list(dataframe = dataframe.name, gbm.x = gbm.x, predictor.names = names(x.data),
 gbm.y = gbm.y, response.name = sp.name, tree.complexity = tree.complexity, n.trees = best.trees,
 learning.rate = learning.rate, best.trees = best.trees, cv.folds = cv.folds,
 family = family, train.fraction = train.fraction, var.monotone = var.monotone)

gbm.object$fitted <- fitted.values

gbm.object$residuals <- residuals

gbm.object$contributions <- gbm.summary

gbm.object$deviances <- list(null.deviance = total.deviance, resid.deviance = resid.deviance)

gbm.object$weights <- weights

gbm.object$gbm.call <- gbm.detail

rm(x.data,y.data, pos=1) #finally, clean up the temporary dataframes

return(gbm.object)

`gbm.plot` <-
function(gbm.object, variable.no = 0, smooth = FALSE, rug = T, n.plots = length(pred.names), common.scale = T, write.title = T, y.label = "fitted function", x.label = var.name, show.contrib = T, ...)
{
 # a gbm object - could be one from gbm.step
 # the var to plot - if zero then plots all
 # should we add a smoothed version of the fitted function
 # plot a rug of deciles
 # use a common scale on the y axis
 # plot a title above the plot
 # the default y-axis label
 # the default x-axis label
 # show the contribution on the x axis
 # other arguments to pass to the plotting
 # useful options include cex.axis, cex.lab, etc.

 gbm.call <- gbm.object$gbm.call
gbm.x <- gbm.call$gbm.x
pred.names <- gbm.call$predictor.names
response.name <- gbm.call$response.name

if (length(variable.no) > 1) stop("only one response variable can be plotted at a time")

if (variable.no > 0) { #we are plotting all vars in rank order of contribution
 n.plots <- 1
}

max.vars <- length(gbm.object$contributions$var)
if (n.plots > max.vars) {
 n.plots <- max.vars
 cat("warning - reducing no of plotted predictors to maximum available (","max.vars,")
..."))
}

dataframe.name <- gbm.call$dataframe
data <- eval(parse(text = dataframe.name))

predictors <- list(rep(NA,n.plots)) # matrix(0,ncol=n.plots,nrow=100)
responses <- list(rep(NA,n.plots)) # matrix(0,ncol=n.plots,nrow=100)

for (j in 1:n.plots) { # cycle through the first time and get the range of the functions
 if (n.plots == 1) {
 k <- variable.no
 } else k <- match(gbm.object$contributions$var[j],pred.names)
 var.name <- gbm.call$predictor.names[k]
pred.data <- data[,gbm.call$gbm.x[k]]
 response.matrix <- plot.gbm(gbm.object, k, return.grid = TRUE)
 predictors[[j]] <- response.matrix[,1]
 if (is.factor(data[,gbm.call$gbm.x[k]])) {
 predictors[[j]] <- factor(predictors[[j]],levels = levels(data[,gbm.call$gbm.x[k]]))
 }
 responses[[j]] <- response.matrix[,2] - mean(response.matrix[,2])
 if(j == 1) {
 ymin = min(responses[[j]])
 ymax = max(responses[[j]])
 } else {
 ymin = min(ymin,min(responses[[j]]))
 ymax = max(ymax,max(responses[[j]]))
 }

 for (j in 1:n.plots) {
 if (n.plots == 1) {
 k <- match(pred.names[variable.no],gbm.object$contributions$var)
 if (show.contrib) {
 x.label <- paste(var.name," (",round(gbm.object$contributions[k,2],1),"%)",sep="")
 }
 } else {
 k <- match(gbm.object$contributions$var[j],pred.names)
 var.name <- gbm.call$predictor.names[k]
 if (show.contrib) {
 x.label <- paste(var.name," (",round(gbm.object$contributions[j,2],1),"%)",sep="")
 }
 }
 x.label <- var.name

 if (common.scale) {
 plot(predictors[[j]],responses[[j]],ylim=c(ymin,ymax), type='l',
 xlab = x.label, ylab = y.label, ...)
 } else {
 plot(predictors[[j]],responses[[j]], type='l',
 xlab = x.label, ylab = y.label, ...)
 }
 if (smooth & is.vector(predictors[[j]])) {
 temp.lo <- loess(responses[[j]] ~ predictors[[j]], span = 0.3)
 lines(predictors[[j]], fitted(temp.lo), lty = 2, col = 2)
 }
 if (n.plots == 1) {
 if (write.title) {
 title(response.name)
 }
 if (rug & is.vector(data[,gbm.call$gbm.x[variable.no]])) {
 rug(quantile(data[,gbm.call$gbm.x[variable.no]], probs = seq(0, 1, 0.1), na.rm = TRUE))
 }
 } else {
 if (write.title & j == 1) {
 title(response.name)
 } else {
 title(response.name)
 }
 }
 }
}
if (rug & is.vector(data[,gbm.call$gbm.x[k]])) {
 rug(quantile(data[,gbm.call$gbm.x[k]], probs = seq(0, 1, 0.1), na.rm = TRUE))
}

`gbm.perspec` <-
function(gbm.object,
 x = 1, # the first variable to be plotted
 y = 2,# the second variable to be plotted
 x.label = NULL,# allows manual specification of the x label
 y.label = NULL,# and y label
 x.range = NULL,# manual range specification for the x variable
 y.range = NULL,# and the y
 z.range = c(0,1), # allows control of the vertical axis
 pred.means = NULL,# allows specification of values for other variables
 theta = 55,# rotation
 phi=40,# and elevation
 smooth = "none", # controls smoothing of the predicted surface
 mask = FALSE,# controls masking using a sample intensity model
 perspective = TRUE,# controls whether a contour or perspective plot is drawn
 text.size=1)# allows control of text size
{
 #
 # gbm.perspec version 2.5 April 2006
 # J Leathwick/J Elith
 #
 # takes a gbm boosted regression tree object produced by gbm.step and
 # plots a perspective plot showing predicted values for two predictors
 # as specified by number using x and y
 # values for all other variables are set at their mean by default
 # but values can be specified by giving a list consisting of the variable name
 # and its desired value, e.g., c(name1 = 12.2, name2 = 57.6)

 require(gbm)
 require(splines)

 #get the boosting model details
 gbm.call <- gbm.object$gbm.call
 gbm.x <- gbm.call$gbm.x
 n.preds <- length(gbm.x)
 gbm.y <- gbm.call$gbm.y
 pred.names <- gbm.call$predictor.names

 x.name <- gbm.call$predictor.names[x]
 if (is.null(x.label)) {
 x.label <- gbm.call$predictor.names[x]
 }
 y.name <- gbm.call$predictor.names[y]
 if (is.null(y.label)) {
 y.label <- gbm.call$predictor.names[y]
 }

 data <- eval(parse(text=gbm.call$dataframe))[,gbm.x]
 n.trees <- gbm.call$best.trees

 if (is.null(x.range)) {
 x.var <- seq(min(data[,x],na.rm=T),max(data[,x],na.rm=T),length = 50)
 }
 else {x.var <- seq(x.range[1],x.range[2],length = 50)}

 if (is.null(y.range)) {
 y.var <- seq(min(data[,y],na.rm=T),max(data[,y],na.rm=T),length = 50)
 }
 else {y.var <- seq(y.range[1],y.range[2],length = 50)}

 pred.frame <- expand.grid(list(x.var,y.var))
 names(pred.frame) <- c(x.name,y.name)
j <- 3
for (i in 1:n.preds) {
 if (i != x & i != y) {
 if (is.vector(data[,i])) {
 m <- match(pred.names[i],names(pred.means))
 if (is.na(m)) {
 pred.frame[,j] <- mean(data[,i],na.rm=T)
 } else pred.frame[,j] <- pred.means[m]
 }
 if (is.factor(data[,i])) {
 m <- match(pred.names[i],names(pred.means))
 temp.table <- table(data[,i])
 if (is.na(m)) {
 pred.frame[,j] <- rep(names(temp.table)[2],2500)
 } else pred.frame[,j] <- pred.means[m]
 pred.frame[,j] <- factor(pred.frame[,j],levels=names(temp.table))
 }
 }
 names(pred.frame)[j] <- pred.names[i]
 j <- j + 1
}

form the prediction
prediction <- predict.gbm(gbm.object,pred.frame,n.trees = n.trees, type="response")
model smooth if required
if (smooth == "model") {
pred.glm <- glm(prediction ~ ns(pred.frame[,1], df = 8) * ns(pred.frame[,2], df = 8),
data=pred.frame,family=poisson)
prediction <- fitted(pred.glm)
}
report the maximum value
max.pred <- max(prediction)
cat("maximum value = ",round(max.pred,2),"\n")
form the matrix
pred.matrix <- matrix(prediction,ncol=50,nrow=50)
kernel smooth if required
if (smooth == "average") { #apply a 3 x 3 smoothing average
pred.matrix.smooth <- pred.matrix
for (i in 2:49) {
for (j in 2:49) {
pred.matrix.smooth[i,j] <- mean(pred.matrix[c((i-1):(i+1)),c((j-1):(j+1))])
}
}
pred.matrix <- pred.matrix.smooth
}
mask out values inside hyper-rectangle but outside of sample space
if (mask) {
mask.trees <- mask.object$gbm.call$best.trees
point.prob <- predict.gbm(mask.object[[1]],pred.frame, n.trees = mask.trees, type="response")
point.prob <- matrix(point.prob,ncol=50,nrow=50)
pred.matrix[point.prob < 0.5] <- 0.0
}
and finally plot the result
if (!perspective) {
image(x = x.var, y = y.var, z = pred.matrix, zlim = c(0,50))
} else {
persp(x=x.var, y=y.var, z=pred.matrix, xlab = x.label, ylab = y.label, zlab = "fitted value","
r = sqrt(10), d = 3, theta=theta, phi=phi, zlim= z.range, ticktype="detailed",
cex=text.size, mgp = c(4,1,0))
}

`calibration` <-
function(obs, preds, family = "binomial") {
 # j elith/j leathwick 17th March 2005
 # calculates calibration statistics for either binomial or count data
 # but the family argument must be specified for the latter
 # a conditional test for the latter will catch most failures to specify
 # the family

 if (family == "bernoulli") family <- "binomial"
 pred.range <- max(preds) - min(preds)
 if(pred.range > 1.2 & family == "binomial") {
 print(paste("range of response variable is ", round(pred.range, 2), sep = "", quote = F)
 print("check family specification", quote = F)
 return()
 }
 if(family == "binomial") {
 pred <- preds + 1e-005
 pred[preddat == 1] <- 0.99999
 mod <- glm(obs ~ log((pred)/(1 - (pred))), family = binomial)
 lp <- log((pred)/(1 - (pred)))
 a0b1 <- glm(obs ~ offset(lp) - 1, family = binomial)
 miller1 <- 1 - pchisq(a0b1$deviance - mod$deviance, 2)
 ab1 <- glm(obs ~ offset(lp), family = binomial)
 miller2 <- 1 - pchisq(a0b1$deviance - ab1$deviance, 1)
 miller3 <- 1 - pchisq(ab1$deviance - mod$deviance, 1)
 }
 if(family == "poisson") {
 mod <- glm(obs ~ log(preds), family = poisson)
 lp <- log(preds)
 a0b1 <- glm(obs ~ offset(lp) - 1, family = poisson)
 miller1 <- 1 - pchisq(a0b1$deviance - mod$deviance, 2)
 ab1 <- glm(obs ~ offset(lp), family = poisson)
 miller2 <- 1 - pchisq(a0b1$deviance - ab1$deviance, 1)
 miller3 <- 1 - pchisq(ab1$deviance - mod$deviance, 1)
 }
 calibration.result <- c(mod$coef, miller1, miller2, miller3)
 names(calibration.result) <- c("intercept", "slope", "testa0b1", "testa0|b1", "testb1|a")
 return(calibration.result)
}

`roc` <-
function(obsdat, preddat) {
 # code adapted from Ferrier, Pearce and Watson's code, by J.Elith
 # see:
 # under a Receiver Operating Characteristic (ROC) curve.
 # Radiology, 143, 29-36
 # of habitat models developed using logistic regression.
 # Ecological Modelling, 133, 225-245.
 # this is the non-parametric calculation for area under the ROC curve,
 # using the fact that a MannWhitney U statistic is closely related to
 # the area

 if (length(obsdat) != length(preddat))
 stop("obs and preds must be equal lengths")
 n.x <- length(obsdat[obsdat == 0])
 n.y <- length(obsdat[obsdat == 1])
 xy <- c(preddat[obsdat == 0], preddat[obsdat == 1])
 rnk <- rank(xy)
 wilc <- ((n.x * n.y) + ((n.x * (n.x + 1))/2) - sum(rnk[1:n.x]))/(n.x * n.y)
\[
\text{return}(\text{round}(\text{wilc}, 4))}
\]

`calc.deviance` <-
function(obs.values, fitted.values, weights = rep(1,length(obs.values)), family="binomial", calc.mean = TRUE)
{
 # j. leathwick/j. elith
 # version 2.8 - 30th March 2007
 # function to calculate deviance given two vectors of raw and fitted values
 # requires a family argument which is set to binomial by default
 # and weights to cater for fitting models with unequal weights
 #
 if (length(obs.values) != length(fitted.values))
 stop("observations and predictions must be of equal length")

 y_i <- obs.values
 u_i <- fitted.values

 if (family == "binomial" | family == "bernoulli") {
 deviance.contribs <- (y_i * log(u_i)) + ((1-y_i) * log(1 - u_i))
 deviance <- -2 * sum(deviance.contribs * weights)
 }

 if (family == "poisson" | family == "Poisson") {
 deviance.contribs <- ifelse(y_i == 0, 0, (y_i * log(y_i/u_i))) - (y_i - u_i)
 deviance <- -2 * sum(deviance.contribs * weights)
 }

 if (family == "laplace") {
 deviance.contribs <- abs(y_i - u_i)
 deviance <- sum(deviance.contribs * weights)
 }

 if (family == "gaussian") {
 deviance.contribs <- (y_i - u_i)^2
 deviance <- sum(deviance.contribs * weights)
 }

 if (calc.mean) deviance <- deviance/length(obs.values)

 return(deviance)
}

`gbm.interactions` <-
function(gbm.object, use.weights = FALSE, # use weights for samples
 mask.object) # a gbm object describing sample intensity
{
 # functions assesses the magnitude of interaction effects in gbm models
 # fitted with interaction depths greater than 1
 # this is achieved by:
 # 1. forming predictions on the linear scale for each predictor pair;
 # 2. fitting a linear model that relates these predictions to the predictor
 # pair, with the the predictors fitted as factors;
 # 3. calculating the mean value of the residuals, the magnitude of which
 # increases with the strength of any interaction effect;
 # 4. results are stored in an array;
 # 5. finally, the n most important interactions are identified,
 # where n is 25% of the number of interaction pairs;

 require(gbm)
gbm.call <- gbm.object$gbm.call
n.trees <- gbm.call$best.trees
depth <- gbm.call$interaction.depth
gbm.x <- gbm.call$gbm.x
n.preds <- length(gbm.x)
pred.names <- gbm.object$gbm.call$predictor.names
cross.tab <- matrix(0, ncol=n.preds, nrow=n.preds)
dimnames(cross.tab) <- list(pred.names, pred.names)

if (use.weights) mask.trees <- mask.object$gbm.call$best.trees

cat("Cross tabulating interactions for gbm model with ", n.preds, " predictors","\n", sep="")
data <- eval(parse(text=gbm.call$dataframe)[, gbm.x])

for (i in 1:(n.preds - 1)) {
 if (is.vector(data[, i])) {
 x.var <- seq(min(data[, i], na.rm=T), max(data[, i], na.rm=T), length = 20)
 } else {
 x.var <- factor(names(table(data[, i])), levels = levels(data[, i]))
 }
 x.length <- length(x.var)
 cat(i, "\n")
 for (j in (i+1):n.preds) {
 if (is.vector(data[, j])) {
 y.var <- seq(min(data[, j], na.rm=T), max(data[, j], na.rm=T), length = 20)
 } else {
 y.var <- factor(names(table(data[, j])), levels = levels(data[, j]))
 }
 y.length <- length(y.var)
 pred.frame <- expand.grid(list(x.var, y.var))
 names(pred.frame) <- c(pred.names[i], pred.names[j])
 n <- 3
 for (k in 1:n.preds) {
 if (k != i & k != j) {
 if (is.vector(data[, k])) {
 pred.frame[, n] <- mean(data[, k], na.rm=T)
 } else {
 temp.table <- sort(table(data[, k]), decreasing = TRUE)
 pred.frame[, n] <- rep(names(temp.table)[1], x.length * y.length)
 pred.frame[, n] <- as.factor(pred.frame[, n])
 }
 names(pred.frame)[n] <- pred.names[k]
 n <- n + 1
 }
 }
 }

form the prediction
#
prediction <- predict.gbm(gbm.object, pred.frame, n.trees = n.trees, type="link")

if (use.weights) {
 point.prob <- predict.gbm(mask.object[[1]], pred.frame, n.trees = mask.trees,
 type="response")
 interaction.test.model <- lm(prediction ~ as.factor(pred.frame[, 1]) + as.factor(pred.frame [, 2]), weights = point.prob)
} else {
 interaction.test.model <- lm(prediction ~ as.factor(pred.frame[, 1]) + as.factor(pred.frame [, 2]))
}
interaction.flag <- round(mean(resid(interaction.test.model)^2) * 1000,2)
cross.tab[i,j] <- interaction.flag

} # end of x2 is vector loop
} # end of j loop
} # end of x1 is vector loop
} # end of i loop

create an index of the values in descending order
search.index <- ((n.preds^2) + 1) - rank(cross.tab, ties.method = "first")
n.important <- round(0.1 * ((n.preds^2)/2)/0)
var1.names <- rep(" ",n.important)
var1.index <- rep(0,n.important)
var2.names <- rep(" ",n.important)
var2.index <- rep(0,n.important)
int.size <- rep(0,n.important)

for (i in 1:n.important) {

 index.match <- match(i,search.index)
 j <- trunc(index.match/n.preds) + 1
 var1.index[i] <- j
 var1.names[i] <- pred.names[j]
 k <- index.match%%n.preds
 if (k > 0) { #only do this if k > 0 - otherwise we have all zeros from here on
 var2.index[i] <- k
 var2.names[i] <- pred.names[k]
 int.size[i] <- cross.tab[k,j]
 }
}

rank.list <- data.frame(var1.index,var1.names,var2.index,var2.names,int.size)

return(list(rank.list = rank.list, interactions = cross.tab, gbm.call = gbm.object$gbm.call))

'gbm.plot.fits' <-

function(gbm.object, mask.presence = FALSE, use.factor = FALSE)
{
 #
 # j leathwick, j elith - 7th January 2005
 #
 # version 2.0 - developed in R 2.0
 #
 # to plot distribution of fitted values in relation to ydat from mars or other p/a models
 # allows masking out of absences to enable focus on sites with high predicted values
 # fitted values = those from model; raw.values = original y values
 # label = text species name; ydat = predictor dataset
 # mask.presence forces function to only plot fitted values for presences
 # use.factor forces to use quicker printing box and whisker plot
 # file.name routes to a pdf file of this name
 #

dat <- gbm.object$gbm.call$dataframe #get the dataframe name
dat <- as.data.frame(eval(parse(text=dat))) #and now the data

n.cases <- nrow(dat)

gbm.call <- gbm.object$gbm.call #and the mars call details
gbm.x <- gbm.call$gbm.x
gbm.y <- gbm.call$gbm.y
family <- gbm.call$family
xdat <- as.data.frame(dat[,gbm.x])
ydat <- as.data.frame(dat[,gbm.y])
n.preds <- ncol(xdat)
fitted.values <- gbm.object$fitted
pred.names <- names(dat)[gbm.x]
sp.name <- names(dat)[gbm.y]

if (mask.presence) {
mask <- ydat == 1
} else {
mask <- rep(TRUE, length = n.cases)
}

robust.max.fit <- approx(ppoints(fitted.values[mask]), sort(fitted.values[mask]), 0.99) # find 99% ile value

for (j in 1:n.preds) {
 if (is.numeric(xdat[mask,j])) {
 wt.mean <- zapsmall(mean((xdat[mask,j] * fitted.values[mask]^5)/mean(fitted.values[mask]^5),na.rm=TRUE),2)
 } else {wt.mean <- "na"
 if (use.factor) {
 temp <- factor(cut(xdat[mask,j], breaks = 12))
 }
 if (family == "binomial") {
 plot(temp, fitted.values[mask], xlab = pred.names[j], ylab = "fitted values", ylim = c(0, 1))
 } else {
 plot(xdat[mask,j], fitted.values[mask], xlab = pred.names[j], ylab = "fitted values")
 }
 } else {if (family == "binomial") {
 plot(xdat[mask,j], fitted.values[mask], xlab = pred.names[j], ylab = "fitted values")
 } abline(h = (0.333 * robust.max.fit$y), lty = 2.)
 if (j == 1) {
 title(paste(sp.name, ", wtm = ", wt.mean))
 } else {
 title(paste("wtm = ", wt.mean))
 }
}

'gbm.simplify' <-
function(gbm.object, # a gbm object describing sample intensity
n.folds = 10, # number of times to repeat the analysis
n.drops = "auto", # can be automatic or an integer specifying the number of drops to check
alpha = 1, # controls stopping when n.drops = "auto"
prev.stratify = TRUE, # use prevalence stratification in selecting evaluation data
eval.data = NULL, # an independent evaluation data set - leave here for now
plot = TRUE) # plot results
{
function to simplify a brt model fitted using gbm.step
version 2.7 - J. Leathwick/J. Elith - June 2006
starts with an initial cross-validated model as produced by gbm.step
and then assesses the potential to remove predictors using k-fold cv
does this for each fold, removing the lowest contributing predictor,
and repeating this process for a set number of steps
after the removal of each predictor, the change in predictive deviance
is computed relative to that obtained when using all predictors
it returns a list containing the mean change in deviance and its se
as a function of the number of variables removed
a table contains a summary of the order in which variables are removed
and a list consisting of the variables retained at each step in the
variable removal process - the latter can be used as an argument to gbm.step
e.g., gbm.step(data = data, gbm.x = simplify.object$pred.list[[4]]...
would implement a new analysis with the original predictor set, minus its
four lowest contributing predictors

first get the original analysis details..

require(gbm)

data <- eval(parse(text=gbm.call$dataframe))
n.cases <- nrow(data)
gbm.x <- gbm.call$gbm.x
gbm.y <- gbm.call$gbm.y
family <- gbm.call$family
lr <- gbm.call$learning.rate
tc <- gbm.call$tree.complexity
start.preds <- length(gbm.x)
max.drops <- start.preds - 2
response.name <- gbm.call$response.name
predictor.names <- gbm.call$predictor.names
n.trees <- gbm.call$best.trees
pred.list <- list(initial = gbm.x)

if (n.drops == "auto") auto.stop <- TRUE
else auto.stop <- FALSE

take a copy of the original data and starting predictors

orig.data <- data
orig.gbm.x <- gbm.x

extract original performance statistics...

original.deviance <- round(gbm.object$cv.statistics$deviance.mean,4)
original.deviance.se <- round(gbm.object$cv.statistics$deviance.se,4)

cat("gbm.simplify - version 2.6","\n
"
cat("simplifying gbm.step model for ",response.name," with ",start.preds," predictors",sep="")
cat(" and ",n.cases," observations \"n\",sep="")
cat("original deviance = ",original.deviance,"("original.deviance.se,")\n\n",sep="")

check that n.drops is less than n.preds - 2 and update if required

if (auto.stop) {
 cat("variable removal will proceed until average change exceeds the original se\n\n")
 n.drops <- 1
} else{
 if (n.drops > start.preds - 2) {
 cat("value of n.drops ("n.drops," is greater than permitted","\n",resetting value to ",start.preds - 2,"\n\n",sep="")
 n.drops <- start.preds - 2
 }
 else {
 cat("a fixed number of",n.drops,"drops will be tested\n\n")
 }
}

set up storage for results

dev.results <- matrix(0, nrow = n.drops, ncol = n.folds)
dimnames(dev.results) <- list(paste("drop.",1:n.drops,sep=""),
paste("rep.",1:n.folds,sep=""))
drop.count <- matrix(NA, nrow = start.preds, ncol = n.folds)
dimnames(drop.count) <- list(predictor.names,paste("rep.",1:n.folds,sep=""))

original.deviances <- rep(0,n.folds)
model.list <- list(paste("model",c(1:n.folds),sep="")) # dummy list for the tree models

create gbm.fixed function call

gbm.call.string <- paste("try(gbm.fixed(data=train.data,gbm.x=gbm.new.x,gbm.y=gbm.y," ,sep="")

gbm.call.string <- paste(gbm.call.string,"family=family,learning.rate=lr,tree.complexity=tc," ,sep="")

gbm.call.string <- paste(gbm.call.string,"n.trees = ",n.trees,"",verbose.FALSE)",sep=""")

now set up the fold structure

if (prev.stratify & family == "bernoulli") {
 presence.mask <- data[,gbm.y] == 1
 absence.mask <- data[,gbm.y] == 0
 n.pres <- sum(presence.mask)
 n.abs <- sum(absence.mask)

 # create a vector of randomised numbers and feed into presences
 selector <- rep(0,n.cases)
 temp <- rep(seq(1, n.folds, by = 1), length = n.pres)
 temp <- temp[order(runif(n.pres, 1, 100))]
 selector[presence.mask] <- temp

 # and then do the same for absences
 temp <- rep(seq(1, n.folds, by = 1), length = n.abs)
 temp <- temp[order(runif(n.abs, 1, 100))]
 selector[absence.mask] <- temp
} else { # otherwise make them random with respect to presence/absence
 selector <- rep(seq(1, n.folds, by = 1), length = n.cases)
 selector <- selector[order(runif(n.cases, 1, 100))]
}

now start by creating the initial models for each fold

cat("creating initial models...\n")

gbm.new.x <- orig.gbm.x

for (i in 1:n.folds) {
 # create the training and prediction folds
 train.data <- orig.data[selector!=i,]
 eval.data <- orig.data[selector==i,]

 model.list[[i]] <- eval(parse(text=gbm.call.string)) # create a fixed size object

 # now make predictions to the withheld fold
 u_i <- eval.data[,gbm.y]
 y_i <- predict.gbm(model.list[[i]], eval.data, n.trees, "response")
 original.deviances[i] <- round(calc.deviance(u_i,y_i, family = family, calc.mean = TRUE),4)
}

end of creating initial models

n.steps <- 1

while (n.steps <= n.drops & n.steps <= max.drops) {
 cat("dropping predictor",n.steps,\n"
 for (i in 1:n.folds) {
 # get the right data
 train.data <- orig.data[selector!=i,]
 eval.data <- orig.data[selector==i,]

 # get the current model details

gbm.call <- model.list[[i]]$gbm.call
gbm.x <- gbm.call$gbm.x
n.preds <- length(gbm.x)
these.pred.names <- model.list[[i]]$gbm.call$predictor.names
contributions <- model.list[[i]]$contributions

get the index number in pred.names of the last variable in the contribution table
last.variable <- match(as.character(contributions[n.preds,1]),these.pred.names)
gbm.new.x <- gbm.x[-last.variable]

and keep a record of what has been dropped
last.variable <- match(as.character(contributions[n.preds,1]),predictor.names)
drop.count[,last.variable,i] <- n.steps

model.list[[i]] <- eval(parse(text=gbm.call.string)) # create a fixed size object
u_i <- eval.data[,gbm.y]
y_i <- predict.gbm(model.list[[i]],eval.data,n.trees,"response")

deviance <- round(calc.deviance(u_i,y_i, family = family, calc.mean = TRUE),4)

calculate difference between intial and new model by subtracting new from old because we want to
minimise deviance
dev.results[n.steps,i] <- round(deviance - original.deviances[i],4)

if (auto.stop){ # check to see if delta mean is less than original deviance error estimate
 delta.mean <- mean(dev.results[n.steps,])
 if (delta.mean < (alpha * original.deviance.se)) {
 n.drops <- n.drops + 1
 dev.results <- rbind(dev.results, rep(0,n.folds))
 }
 n.steps <- n.steps + 1
}

now label the deviance matrix
dimnames(dev.results) <- list(paste("drop.",1:n.drops,sep=""),
paste("rep.",1:n.folds,sep=""))

calculate mean changes in deviance and their se
mean.delta <- apply(dev.results,1,mean)
se.delta <- sqrt(apply(dev.results,1,var))/sqrt(n.folds)

make a list of variables to remove
pred.mean.score <- apply(drop.count,1,mean,na.rm=T)
removal.list <- names(sort(pred.mean.score))

#and then the corresponding numbers
n.remove <- length(removal.list)
removal.numbers <- rep(0,n.remove)

construct predictor lists to facilitate final model fitting
for (i in 1:n.drops) {
 removal.numbers[i] <- match(removal.list[i],predictor.names)
pred.list[[i]] <- orig.gbm.x[0:removal.numbers[1:i]]
names(pred.list[[i]]) <- paste("preds.",i,sep=""
}

removal.summary <- data.frame(pred.no = removal.numbers, removal.score = sort(pred.mean.score))
if (plot) {
 y.max <- 1.5 * max(mean.delta + se.delta)
 y.min <- 1.5 * min(mean.delta - se.delta)
 plot(seq(1,n.drops),mean.delta,xlab="variables removed",
 ylab = "predictive deviance",type='l',ylim=c(y.min,y.max))
 lines(seq(1,n.drops),mean.delta + se.delta,ty = 2)
 lines(seq(1,n.drops),mean.delta - se.delta,ty = 2)
 abline(h = 0 , lty = 2, col = 3)
 min.y <- mean(delta)
 min.pos <- match(min.y,mean.delta)
 abline(v = min.pos, lty = 3, col = 2)
 title(paste("RFE deviance - ",response.name," - folds = ",n.folds,sep=""))
}

return(list(delta.mean = mean.delta, delta.se = se.delta,
 dev.matrix = dev.results, drop.count = drop.count,
 pred.list = pred.list, removal.summary = removal.summary,
 gbm.call = gbm.call))

"gbm.predict.grids" <-
function(model, new.dat, want.grids = F, preds2R = T, sp.name = "preds",
 pred.vec = NULL, filepath = NULL,
 num.col = NULL, num.row = NULL, xll = NULL, yll = NULL,
 cell.size = NULL, no.data = NULL, plot=F, full.grid=T,
 part.number=NULL, part.row = NULL, header = T)
{
 # J.Elith / J.Leathwick, March 07
 # to make predictions to sites or grids. If to sites, the
 # predictions are written to the R workspace. If to grid,
 # the grids are written to a nominated directory and optionally also
 # plotted in R and written to the workspace
 #
 # new data (new.dat) must be a data frame with column names identical
 # to names for all variables in the model used for prediction
 #
 # pred.vec is a vector of -9999's, the length of the scanned full grid
 # (i.e. without nodata values excluded)
 #
 # filepath must specify the whole path as a character vector, but without the final file
 # name - eg "c:/gbm/"
 temp <- predict.gbm(model, new.dat, n.trees=model$gbm.call$best.trees, type="response")

 if(want.grids){
 dbname <- paste(filepath, sp.name,".asc", sep="")
 full.pred <- pred.vec
 full.pred[as.numeric(row.names(new.dat))] <- temp
 if(header){
 write(paste("ncols ",num.col,sep=""),dbname)
 write(paste("nrows ",num.row,sep=""),dbname,append=T)
 write(paste("xllcorner ",xll,sep=""),dbname,append=T)
 write(paste("yllcorner ",yll,sep=""),dbname,append=T)
 write(paste("cellsize ",cell.size,sep=""),dbname,append=T)
 write(paste("NODATA_value ",no.data,sep=""),dbname,append=T)
 }
 full.pred.mat <- matrix(full.pred, nrow=num.row, ncol=num.col, byrow=T)
 if (plot) {
 image(z = t(full.pred.mat)[, nrow(full.pred.mat):1], zlim = c(0,1), col = rev(topo.colors(12)))
 }
 write.table(full.pred.mat, dbname, sep=" ", append=T, row.names=F, col.names=F)
 }
 #also write to R directory, if required:
if(preds2R){assign(sp.name,temp, pos=1)}
}

else{
 full.pred.mat <- matrix(full.pred, nrow=part.row, ncol=num.col, byrow=T)
 write.table(full.pred.mat, newname, sep=" ", append=T, row.names=F, col.names=F)
 if(preds2R){assign(paste(sp.name, part.number, sep=" "),temp, pos=1)}
}

else{
assign(sp.name,temp, pos=1)
}
}